Answer
There is one horizontal tangent at the point $(1, 1)$.
Work Step by Step
Using the quotient rule: $fâ(x)=(\frac{u(x)}{v(x)})'=\frac{u'(x)v(x)-v'(x)u(x)}{(v(x))^2}$
$u(x)=(2x-1); u'(x)=2$
$v(x)=x^2; v'(x)=2x$
$f'(x)=\frac{(2)(x^2)-(2x)(2x-1)}{x^4}=\frac{2-2x}{x^3}$
$f'(x)=0 \rightarrow (2-2x)=0 \rightarrow x=1$
$f(1)=\frac{2(1)-1}{1^2}=1.$
The point is $(1, 1)$.