Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 2 - Differentiation - 2.2 Exercises - Page 117: 118

Answer

$\frac{d}{dx}[cos x] = \lim\limits_{Δx \to 0} \frac{cos(x + Δx) - cosx}{Δx} = \lim\limits_{Δx \to 0} \frac{cosx*cosΔx - sinx*sinΔx-cosx}{Δx} = \lim\limits_{Δx \to 0} \frac{(cosx*cosΔx -cosx)- sinx*sinΔx}{Δx} = \lim\limits_{Δx \to 0} [\frac{-cosx (1-cosΔx)}{Δx} - \frac{sinx*sinΔx}{Δx} ] = -cosx (\lim\limits_{Δx \to 0} \frac{1-cosΔx}{Δx}) - sinx (\lim\limits_{Δx \to 0} \frac{sinΔx}{Δx}) = [-cosx (0) - sinx (1)] = -sinx$

Work Step by Step

To prove that $\frac{d}{dx}[cosx ]= -sinx$ we can do the following steps: $\frac{d}{dx}[cos x] = \lim\limits_{Δx \to 0} \frac{cos(x + Δx) - cosx}{Δx} = \lim\limits_{Δx \to 0} \frac{cosx*cosΔx - sinx*sinΔx-cosx}{Δx} = \lim\limits_{Δx \to 0} \frac{(cosx*cosΔx -cosx)- sinx*sinΔx}{Δx} = \lim\limits_{Δx \to 0} [\frac{-cosx (1-cosΔx)}{Δx} - \frac{sinx*sinΔx}{Δx} ] = -cosx (\lim\limits_{Δx \to 0} \frac{1-cosΔx}{Δx}) - sinx (\lim\limits_{Δx \to 0} \frac{sinΔx}{Δx}) = [-cosx (0) - sinx (1)] = -sinx$ Then, is proved that $\frac{d}{dx}[cosx ]= -sinx$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.