Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 2 - Differentiation - 2.2 Exercises - Page 117: 109

Answer

Since average velocity comes out to be the same as instantaneous velocity. Hence verified.

Work Step by Step

We know that average velocity is equal to $\dfrac{\Delta y}{\Delta x}$, where $\Delta y$ is change in position and $\Delta x$ is change in time. Now to find change in time substract $t_\circ +\Delta t$ and $t_\circ -\Delta t$. We get, change in time equals to $t_\circ +\Delta t-t_\circ +\Delta t$ or $2\Delta t$. Now to calculate change in position, substract $s(t_\circ +\Delta t)$ and $s(t_\circ -\Delta t)$. We get, change in position equals to $s(t_\circ +\Delta t)-s(t_\circ -\Delta t)$. Now calculate $s(t_\circ +\Delta t)$, by substituting $t=t_\circ +\Delta t$ in $s(t)=-\dfrac{1}{2}at^2+c$. We get, $s(t_\circ +\Delta t)=-\dfrac{1}{2}a(t_\circ +\Delta t)^2+c=-\dfrac{1}{2}at_\circ^2-\dfrac{1}{2}a\Delta t^2-at_\circ \Delta t+c$ Now calculate $s(t_\circ -\Delta t)$, by substituting $t=t_\circ -\Delta t$ in $s(t)=-\dfrac{1}{2}at^2+c$. We get, $s(t_\circ -\Delta t)=-\dfrac{1}{2}a(t_\circ -\Delta t)^2+c=-\dfrac{1}{2}at_\circ^2-\dfrac{1}{2}a\Delta t^2+at_\circ \Delta t+c$ Now substitute, $s(t_\circ +\Delta t)=-\dfrac{1}{2}at_\circ^2-\dfrac{1}{2}a\Delta t^2-at_\circ \Delta t+c$ and $s(t_\circ -\Delta t)=-\dfrac{1}{2}at_\circ^2-\dfrac{1}{2}a\Delta t^2+at_\circ \Delta t+c$ in $s(t_\circ +\Delta t)-s(t_\circ -\Delta t)$. $s(t_\circ +\Delta t)-s(t_\circ -\Delta t)=-\dfrac{1}{2}at_\circ^2-\dfrac{1}{2}a\Delta t^2-at_\circ \Delta t+c \hspace{200px}-(-\dfrac{1}{2}at_\circ^2-\dfrac{1}{2}a\Delta t^2+at_\circ \Delta t+c)$ $\implies s(t_\circ +\Delta t)-s(t_\circ -\Delta t)=-\dfrac{1}{2}at_\circ^2-\dfrac{1}{2}a\Delta t^2-at_\circ \Delta t+c \hspace{200px}+\dfrac{1}{2}at_\circ^2+\dfrac{1}{2}a\Delta t^2-at_\circ \Delta t-c$ $\implies s(t_\circ +\Delta t)-s(t_\circ -\Delta t)=-2at_\circ \Delta t$ Divide change in position by change in time to get average velocity. Average velocity $=\dfrac{-2at_\circ \Delta t}{2\Delta t}=-at_\circ$. Now to find the instantaneous velocity at $t=t_\circ$ for the position function $s(t)=-\dfrac{1}{2}at^2+c$. Differentiate $s(t)=-\dfrac{1}{2}at^2+c$ with respect to time $t$. We get, $s'(t)=-\dfrac{1}{2}a\times2t=-at$ Now substitute $t=t_\circ$. We get, $s'(t_\circ)=-at_\circ=$ average velocity over the time interval $[t_\circ+\Delta t,t_\circ-\Delta t]$. Hence verified
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.