Answer
$y=2x^2-3x+1$
Work Step by Step
$y=ax^2+bx+c$
Passes through $(0,1)$,
$(1)=a(0)^2+b(0)+c$
$c=1$
$y=ax^2+bx+1$
It also passes through (1,0),
$y=ax^2+bx+1$
$(0)=a(1)^2+b(1)+1$
$a+b=-1$
$\frac{dy}{dx}=2ax+b$
Tangent to $y=x-1$ at $(1,0)$
The tangent has a slope of $1$ when $x=1$
$2a(1)+b=1$
$2a+b=1$
$2a+b=1$
$a+b=-1$
Subtracting both equations yields,
$a=2$.
$(2)+b=-1$
$b=-3$
$y=ax^2+bx+1$
$y=2x^2-3x+1$