Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 2 - Differentiation - 2.2 Exercises - Page 117: 116

Answer

$a=0$ $b=1$

Work Step by Step

$\lim\limits_{x \to 0^-}f(x)$ $=\lim\limits_{x \to 0^-}\cos(x)$ $=\cos(0)$ $=1$ $\lim\limits_{x \to 0^+}f(x)$ $=\lim\limits_{x \to 0^+}(ax+b)$ $=a(0)+b$ $=b$ For $f(x)$ to be differentiable, it must be continuous. Therefore, $b = 1$. $ax + 1$ $x \rightarrow 0^-$ $f(x) = cos(x)$ $f'(x) = -sin(x)$ $f'(0) = -sin(0)$ $f'(0) = 0$ $x \rightarrow 0^+$ $f(x) = ax + 1$ $f'(x) = a$ The differentiation at $x=0$ should be equal when approaching from the left and right side. So $a=0$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.