Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 2 - Differentiation - 2.1 Exercises - Page 105: 88

Answer

No, the function is not differentiable at x = 1.

Work Step by Step

Derivative from the left: $\lim\limits_{x \to 1^{-}} f(x)$ $= \lim\limits_{x \to 1^{-}} \frac{f(x) - f(c)}{x - c}$ $= \lim\limits_{x \to 1^{-}} \frac{x - 1}{x - 1}$ $= \lim\limits_{x \to 1^{-}} 1$ $= 1$ Derivative from the right: $\lim\limits_{x \to 1^{+}} f(x)$ $=\lim\limits_{x \to 1^{+}} \frac{f(x) - f(c)}{x - c}$ $= \lim\limits_{x \to 1^{+}} \frac{x^{2} - 1}{x - 1}$ $= \lim\limits_{x \to 1^{+}} \frac{(x + 1)(x - 1)}{x - 1}$ $= \lim\limits_{x \to 1^{+}} (x + 1)$ $= 2$ Since $\lim\limits_{x \to 1^{-}} f(x) \ne \lim\limits_{x \to 1^{+}} f(x)$, the function $f(x)$ is not differentiable at x = 1.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.