Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 2 - Differentiation - 2.1 Exercises - Page 105: 87

Answer

$f$ differentiable in $x=1$

Work Step by Step

We are given the function: $f(x)=\begin{cases} (x-1)^3,x\leq 1\\ (x-1)^2,x>1 \end{cases}$ Determine the derivative from the left: $\lim\limits_{x \to 1^-}\dfrac{f(x)-f(1)}{x-1} $=\lim\limits_{x \to 1^-}\dfrac{f(x-1)^3-(1-1)^3}{x-1}$ $=\lim\limits_{x \to 1^-}\dfrac{(x-1)^3}{x-1}$ $=\lim\limits_{x \to 1^-} (x-1)^2$ $=(1-1)^2$ $=0$ Determine the derivative from the right: $\lim\limits_{x \to 1^+}\dfrac{f(x)-f(1)}{x-1} $=\lim\limits_{x \to 1^+}\dfrac{f(x-1)^2-(1-1)^2}{x-1}$ $=\lim\limits_{x \to 1^+}\dfrac{(x-1)^2}{x-1}$ $=\lim\limits_{x \to 1^+} (x-1)$ $=1-1$ $=0$ We got: $\lim\limits_{x \to 1^-}\dfrac{f(x)-f(1)}{x-1}=\lim\limits_{x \to 1^+}\dfrac{f(x)-f(1)}{x-1}=0$ So the one-sided limits are equal. This means that the function $f$ is differentiable in $x=1$ and $f'(1)=0$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.