Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 11 - Three-Dimensional Space; Vectors - 11.1 Rectangular Coordinates In 3-Space; Spheres; Cylindrical Surfaces - Exercises Set 11.1 - Page 772: 52

Answer

The sphere is centered at $C(-G / 2,-H / 2,-I / 2)$ and its radius is \[ r=\sqrt{\frac{1}{4}\left(G^{2}+H^{2}+I^{2}\right)-J}=\frac{\sqrt{K}}{2} \]

Work Step by Step

Let us consider the equation \[ 0=G x+H y+I z+J+z^{2}+y^{2}+x^{2} \] By completing squares: \[ \begin{aligned} -1= z^{2}+I z+y^{2}+H y+ x^{2}+G x\\ x^{2}+G x+\frac{G}{4}+y^{2}+H y+\frac{H^{2}}{4}+z^{2}+I z+\frac{I^{2}}{4}=\frac{1}{4}\left(G^{2}+H^{2}+I^{2}\right)-J \\ \Rightarrow\left(x+\frac{G}{2}\right)^{2}+\left(y+\frac{H}{2}\right)^{2}+\left(z+\frac{I}{2}\right)^{2}=\frac{1}{4}\left(G^{2}+H^{2}+I^{2}\right)-J & \end{aligned} \] If $\frac{K}{4}=\frac{1}{4}\left(G^{2}+H^{2}+I^{2}\right)-J>0,$ then the equation corresponds to a sphere of radius $r=\sqrt{K} / 2$ centered at $C(-G / 2,-H / 2,-I / 2)$ If $K / 4=0 \Rightarrow K=0$ and then \[ \begin{array}{c} \left(\frac{I}{2}+z\right)=\left(\frac{G}{2}+x\right)=\left(\frac{H}{2}+y\right)=0 \\ \Rightarrow \quad y=-\frac{H}{2}, \quad x=-\frac{G}{2} \quad \text { and } \quad z=-\frac{I}{2} \end{array} \] These are the coordinates of a point in 3-space. Since $x^{2} \geq 0$ for all real $x$, $4 K \geq 0$. Therefore, if $K<0$, the equation doesn't have a solution. This means that the equation has no graph. b) The sphere is centered at $C(-G / 2,-H / 2,-I / 2)$ and the radius is \[ \sqrt{\frac{1}{4}\left(I^{2}+H^{2}+G^{2}\right)-J}=\frac{\sqrt{K}}{2}=r \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.