Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 11 - Three-Dimensional Space; Vectors - 11.1 Rectangular Coordinates In 3-Space; Spheres; Cylindrical Surfaces - Exercises Set 11.1 - Page 772: 27

Answer

No graph.

Work Step by Step

\[ 0=25-3 x+4 y-8 z+x^{2}+y^{2}+z^{2} \] Subtract 25 from each side \[ -25=-3 x+4 y-8 z+x^{2}+y^{2}+z^{2} \] Group like terms \[ -25=\left(-3 x+x^{2}\right)+\left(-8 z+z^{2}\right)+\left(4 y+y^{2}\right) \] Complete the square for each binomial \[ \frac{9}{4}+4+16-25=\left(4 y+4+y^{2}\right)+\left(-8 z+16+z^{2}\right)+\left(-3 x+\frac{9}{4}+x^{2}\right) \] Take each perfect square and simplify the right side \[ -\frac{11}{4}=(2+y)^{2}+(-4+z)^{2}+\left(-\frac{3}{2}+x\right)^{2} \] Equation is in the form \[ k=\left(-y_{0}+y\right)^{2}+\left(-z_{0}+z\right)^{2}+\left(-x_{0}+x\right)^{2} \] With $y_{0}=-2, z_{0}=4, x_{0}=\frac{3}{2}, $ and $k=-\frac{11}{4}$ Since $k<0$, the equation does not satisfy any values of $x, y, z$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.