Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 11 - Three-Dimensional Space; Vectors - 11.1 Rectangular Coordinates In 3-Space; Spheres; Cylindrical Surfaces - Exercises Set 11.1 - Page 771: 11

Answer

b) The square angle is at $A(2,1,6)$ c) $\operatorname{Area}=49(\text { units })^{2}$ a) $A B C$ is a square triangle, we have proven that

Work Step by Step

a) Let us consider the points \[ C(8,5,-6), B(4,7,9) \text { and } A(2,1,6) \] We compute the three distances: \[ \begin{array}{l} d(A, B)=\overline{A B}=\sqrt{(-1+7)^{2}+(-6+9)^{2}+(-2+4)^{2}}=\sqrt{9+36+4}=\sqrt{49}=7 \\ d(A, C)=\overline{A C}=\sqrt{(-2+8)^{2}+(-1+5)^{2}+(-6-6)^{2}}=\sqrt{144+16+36}=14 \\ d(B, C)=\overline{B C}=\sqrt{(-4+8)^{2}+(-7+5)^{2}+(-9-6)^{2}}=\sqrt{225+4+16}=7 \sqrt{5} \end{array} \] b) $\operatorname{Since} \overline{B C}^{2}=(7 \sqrt{5})^{2}=14^{2}+7^{2}=A C^{2}, A B C+ A B^{2} $ is a right triangle, which has the right angle at $A(2,1,6)$ c) Since $A B C$ is a right triangle and the hypotenuse is $\overline{B C},$ the area is: \[ \text { Area }=\frac{1}{2} \overline{A B} \cdot \overline{A C}=\frac{1}{2}(14)(7)=49(\text { units })^{2} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.