Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.5 - Implicit Differentiation - 3.5 Exercises - Page 215: 44

Answer

$\frac{d^3y}{dx^3}=42$

Work Step by Step

$x^2+xy+y^3=1$ $2x+y+x\frac{dy}{dx}+3y^2\frac{dy}{dx}=0$ $\frac{dy}{dx}=\frac{-2x-y}{x+3y^2}$ $\frac{d^2y}{dx^2}=\frac{(x+3y^2)\frac{d}{dx}(-2x-y)+(2x+y)\frac{d}{dx}(x+3y^2)}{(x+3y^2)^2}$ $=\frac{(x+3y^2)(-2-\frac{dy}{dx})+(2x+y)(1+6y\frac{dy}{dx})}{(x+3y^2)^2}$ $=\frac{(x+3y^2)(-2+\frac{2x+y}{x+3y^2})+(2x+y)(1+6y\frac{-2x-y}{x+3y^2})}{(x+3y^2)^2}$ $=\frac{(x+3y^2)(\frac{-2x-6y^2+2x+y}{x+3y^2})+(2x+y)(\frac{x+3y^2-12yx-6y^2}{x+3y^2})}{(x+3y^2)^2}$ $=\frac{(x+3y^2)(-2x-6y^2+2x+y)+(2x+y)(x+3y^2-12yx-6y^2)}{(x+3y^2)}$ $=\frac{-2x^2-6xy^2+2x^2+xy-6xy^2-18y^4+6xy^2+3y^3+2x^2+6xy^2-24yx^2-12xy^2+xy+3y^3-12xy^2-6y^3}{(x+3y^2)}$ $=\frac{2x^2-24x^2y-24xy^2+2xy-18y^4}{(x+3y^2)}$ $\frac{d^3y}{dx^3}=\frac{\frac{d}{dx}(2x^2-24x^2y-24xy^2+2xy-18y^4)(x+3y^2)-(2x^2-24x^2y-24xy^2+2xy-18y^4)\frac{d}{dx}(x+3y^2)}{(x+3y^2)^2}$ $\frac{d^3y}{dx^3}=\frac{(4x-48xy-24x^2\frac{dy}{dx}-24y^2-48xy\frac{dy}{dx}+2xy-18y^4)(x+3y^2)-(2x^2-24x^2y-24xy^2+2xy-18y^4)(1+6y\frac{dy}{dx})}{(x+3y^2)^2}$ Substitude $x=1$, $y=0$, $\frac{dy}{dx}=-2$ $\frac{d^3y}{dx^3}=42$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.