Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.5 - Implicit Differentiation - 3.5 Exercises - Page 215: 27

Answer

$y = x$

Work Step by Step

$$\eqalign{ & y{e^{\sin x}} = x\cos y,{\text{ }}\left( {0,0} \right) \cr & {\text{Taking the derivative of both sides of the equation with }} \cr & {\text{respect to }}x \cr & \frac{d}{{dx}}\left[ {y{e^{\sin x}}} \right] = \frac{d}{{dx}}\left[ {x\cos y} \right] \cr & {\text{Using the product rule}} \cr & y\frac{d}{{dx}}\left[ {{e^{\sin x}}} \right] + {e^{\sin x}}\frac{d}{{dx}}\left[ y \right] = x\frac{d}{{dx}}\left[ {\cos y} \right] + \cos y\frac{d}{{dx}}\left[ x \right] \cr & {\text{Computing derivatives}} \cr & y\left( {{e^{\sin x}}\cos x} \right) + {e^{\sin x}}\frac{{dy}}{{dx}} = x\left( { - \sin y} \right)\frac{{dy}}{{dx}} + \cos y\left( 1 \right) \cr & {e^{\sin x}}y\cos x + {e^{\sin x}}\frac{{dy}}{{dx}} = - x\sin y\frac{{dy}}{{dx}} + \cos y \cr & {\text{Collecting the terms that contains }}\frac{{dy}}{{dx}} \cr & {e^{\sin x}}\frac{{dy}}{{dx}} + x\sin y\frac{{dy}}{{dx}} = \cos y - {e^{\sin x}}y\cos x \cr & {\text{Factor and solve for }}\frac{{dy}}{{dx}} \cr & \left( {{e^{\sin x}} + x\sin y} \right)\frac{{dy}}{{dx}} = \cos y - {e^{\sin x}}y\cos x \cr & \frac{{dy}}{{dx}} = \frac{{\cos y - {e^{\sin x}}y\cos x}}{{{e^{\sin x}} + x\sin y}} \cr & \cr & {\text{Find the slope }}m{\text{ at the point }}\left( {0,0} \right) \cr & m = {\left. {\frac{{dy}}{{dx}}} \right|_{\left( {0,0} \right)}} = \frac{{\cos \left( 0 \right) - {e^{\sin \left( 0 \right)}}\left( 0 \right)\cos \left( 0 \right)}}{{{e^{\sin \left( 0 \right)}} + \left( 0 \right)\sin \left( 0 \right)}} \cr & m = \frac{1}{1} \cr & m = 1 \cr & {\text{Find the equation of the tangent line at the given point}} \cr & y - {y_1} = m\left( {x - {x_1}} \right) \cr & \underbrace {\left( {0,0} \right)}_{\left( {{x_1},{y_1}} \right)} \to x = 0{\text{ and }}{y_1} = 0 \cr & {\text{Therefore}} \cr & y - 0 = 1\left( {x - 0} \right) \cr & {\text{Simplify}} \cr & y = x \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.