Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.5 - Implicit Differentiation - 3.5 Exercises - Page 215: 30

Answer

$y=\frac{7\sqrt{2}}{8}x-\frac{3\sqrt{2}}{4}$

Work Step by Step

$y^2(6-x)=x^3$ (Take the implicit differentiation) $\frac{d}{dx}(y^2(6-x))=\frac{d}{dx}(x^3)$ (Use the Product Rule) $\frac{d}{dx}(y^2)\cdot (6-x)+y^2\cdot \frac{d}{dx}(6-x)=3x^2$ $2y\cdot \frac{dy}{dx}\cdot (6-x)+y^2(-1)=3x^2$ (Find $\frac{dy}{dx}$ at $(x,y)=(2,\sqrt{2})$ $2\sqrt{2}\cdot \frac{dy}{dx}\cdot (6-2)+\sqrt{2}^2(-1)=3\cdot 2^2$ $8\sqrt{2}\frac{dy}{dx}-2=12$ $8\sqrt{2}\frac{dy}{dx}=14$ $\frac{dy}{dx}=\frac{7}{4\sqrt{2}}$ So, the slope of the tangent line to the curve at $(2,\sqrt{2})$ is $m=\frac{7}{4\sqrt{2}}$. Now, find the equation of the tangent line: $y-\sqrt{2}=\frac{7}{4\sqrt{2}}(x-2)$ $y-\sqrt{2}=\frac{7}{4\sqrt{2}}x-\frac{7\sqrt{2}}{4}$ $y=\frac{7}{4\sqrt{2}}x-\frac{3\sqrt{2}}{4}$ $y=\frac{7\sqrt{2}}{8}x-\frac{3\sqrt{2}}{4}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.