Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 2 - Section 2.7 - Derivatives and Rates of Change - 2.7 Exercises - Page 150: 26

Answer

$f'(a)=\frac{1}{(1-4a)^2}$

Work Step by Step

$f'(a)=\lim\limits_{x \to a}\frac{f(x)-f(a)}{x-a}$ (Use the function formula $f(x)=\frac{x}{1-4x}$) $=\lim\limits_{x \to a}\frac{\frac{x}{1-4x}-\frac{a}{1-4a}}{x-a}$ (Simplify the numerator) $=\lim\limits_{x \to a}\frac{\frac{x(1-4a)-a(1-4x)}{(1-4x)(1-4a)}}{x-a}$ $=\lim\limits_{x \to a}\frac{\frac{x-a}{(1-4x)(1-4a)}}{x-a}$ (Cancel the common factor) $=\lim\limits_{x \to a}\frac{1}{(1-4x)(1-4a)}$ (Evaluate the limit by direct substitution) $=\frac{1}{(1-4a)(1-4a)}$ $=\frac{1}{(1-4a)^2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.