Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 2 - Section 2.7 - Derivatives and Rates of Change - 2.7 Exercises - Page 150: 20

Answer

$f'\left( { - 1} \right) = - 20$

Work Step by Step

$$\eqalign{ & f\left( x \right) = 5{x^4},{\text{ }}a = - 1 \cr & {\text{Using the definition of the derivative}} \cr & f'\left( a \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {a + h} \right) - f\left( a \right)}}{h} \cr & {\text{Therefore}}{\text{,}} \cr & f'\left( a \right) = \mathop {\lim }\limits_{h \to 0} \frac{{5{{\left( {a + h} \right)}^4} - 5{a^4}}}{h} \cr & {\text{Expanding }}{\left( {a + h} \right)^4} \cr & f'\left( a \right) = \mathop {\lim }\limits_{h \to 0} \frac{{5\left( {{a^4} + 4{a^3}h + 6{a^2}{h^2} + 4a{h^3} + {h^4}} \right) - 5{a^4}}}{h} \cr & f'\left( a \right) = \mathop {\lim }\limits_{h \to 0} \frac{{5{a^4} + 20{a^3}h + 30{a^2}{h^2} + 20a{h^3} + 5{h^4} - 5{a^4}}}{h} \cr & {\text{Simplifying}} \cr & f'\left( a \right) = \mathop {\lim }\limits_{h \to 0} \frac{{20{a^4}h + 30{a^3}{h^2} + 20a{h^3} + 5{h^4}}}{h} \cr & f'\left( a \right) = \mathop {\lim }\limits_{h \to 0} \frac{{h\left( {20{a^3} + 30{a^2}h + 20a{h^2} + 5{h^3}} \right)}}{h} \cr & f'\left( a \right) = \mathop {\lim }\limits_{h \to 0} \left( {20{a^3} + 30{a^2}h + 20a{h^2} + 5{h^3}} \right) \cr & {\text{Evaluate the limit when }}h \to 0 \cr & f'\left( a \right) = 20{a^3} + 30{a^2}\left( 0 \right) + 20a{\left( 0 \right)^2} + 5{\left( 0 \right)^3} \cr & f'\left( a \right) = 20{a^3} \cr & {\text{Find }}f'\left( a \right){\text{ at }}a = - 1 \cr & f'\left( { - 1} \right) = 20{\left( { - 1} \right)^3} \cr & f'\left( { - 1} \right) = - 20 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.