Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 2 - Section 2.7 - Derivatives and Rates of Change - 2.7 Exercises - Page 150: 21

Answer

$\frac{5}{9}$

Work Step by Step

Step 1: Simplify the difference quotient $\frac{f(x)-f(a)}{x-a}$. $\frac{f(x)-f(3)}{x-3}=\frac{\frac{x^2}{x+6}-\frac{3^2}{3+6}}{x-3}=\frac{\frac{x^2}{x+6}-1}{x-3}=\frac{\frac{x^2-x-6}{x+6}}{x-3}=\frac{x^2-x-6}{(x+6)(x-3)}=\frac{(x+2)(x-3)}{(x+6)(x-3)}=\frac{x+2}{x+6}$ Step 2: Evaluate the limit $\lim\limits_{x \to a}\frac{f(x)-f(a)}{x-a}$. $\lim\limits_{x \to 3}\frac{f(x)-f(3)}{x-3}=\lim\limits_{x \to 3}\frac{x+2}{x+6}=\frac{3+2}{3+6}=\frac{5}{9}$ Step 3: Conclude $f'(a)$. $f'(3)=\lim\limits_{x \to 3}\frac{f(x)-f(3)}{x-3}=\frac{5}{9}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.