Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 2 - Section 2.7 - Derivatives and Rates of Change - 2.7 Exercises - Page 150: 19

Answer

$f'\left( 6 \right) = \frac{2}{5}$

Work Step by Step

$$\eqalign{ & f\left( x \right) = \sqrt {4x + 1} ,{\text{ }}a = 6 \cr & {\text{Using the definition of the derivative}} \cr & f'\left( a \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {a + h} \right) - f\left( a \right)}}{h} \cr & {\text{Therefore}}{\text{,}} \cr & f'\left( a \right) = \mathop {\lim }\limits_{h \to 0} \frac{{\sqrt {4\left( {a + h} \right) + 1} - \sqrt {4a + 1} }}{h} \cr & {\text{Rationalizing the numerator}} \cr & f'\left( a \right) = \mathop {\lim }\limits_{h \to 0} \frac{{\sqrt {4\left( {a + h} \right) + 1} - \sqrt {4a + 1} }}{h} \times \frac{{\sqrt {4\left( {a + h} \right) + 1} + \sqrt {4a + 1} }}{{\sqrt {4\left( {a + h} \right) + 1} + \sqrt {4a + 1} }} \cr & f'\left( a \right) = \mathop {\lim }\limits_{h \to 0} \frac{{{{\left( {\sqrt {4\left( {a + h} \right) + 1} } \right)}^2} - {{\left( {\sqrt {4a + 1} } \right)}^2}}}{{h(\sqrt {4\left( {a + h} \right) + 1} + \sqrt {4a + 1}) }} \cr & {\text{Simplifying}} \cr & f'\left( a \right) = \mathop {\lim }\limits_{h \to 0} \frac{{4\left( {a + h} \right) + 1 - \left( {4a + 1} \right)}}{{h(\sqrt {4\left( {a + h} \right) + 1} + \sqrt {4a + 1}) }} \cr & f'\left( a \right) = \mathop {\lim }\limits_{h \to 0} \frac{{4a + 4h + 1 - 4a - 1}}{{h(\sqrt {4\left( {a + h} \right) + 1} + \sqrt {4a + 1}) }} \cr & f'\left( a \right) = \mathop {\lim }\limits_{h \to 0} \frac{{4h}}{{h(\sqrt {4\left( {a + h} \right) + 1} + \sqrt {4a + 1}) }} \cr & f'\left( a \right) = \mathop {\lim }\limits_{h \to 0} \frac{4}{{\sqrt {4\left( {a + h} \right) + 1} + \sqrt {4a + 1} }} \cr & {\text{Evaluate the limit when }}h \to 0 \cr & f'\left( a \right) = \frac{4}{{\sqrt {4a + 1} + \sqrt {4a + 1} }} \cr & f'\left( a \right) = \frac{2}{{\sqrt {4a + 1} }} \cr & {\text{Find }}f'\left( a \right){\text{ at }}a = 6 \cr & f'\left( 6 \right) = \frac{2}{{\sqrt {4\left( 6 \right) + 1} }} \cr & f'\left( 6 \right) = \frac{2}{5} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.