Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 2 - Section 2.6 - Limits at Infinity; Horizontal Asymptotes - 2.6 Exercises - Page 140: 81

Answer

(a) $\lim\limits_{x \to \infty}f(x) = \lim\limits_{t \to 0^+}f(\frac{1}{t})$ and $\lim\limits_{x \to -\infty}f(x) = \lim\limits_{t \to 0^-}f(\frac{1}{t})$ if these limits exist. (b) $\lim\limits_{x \to 0^+}x~sin~\frac{1}{x} = 0$

Work Step by Step

(a) Suppose $\lim\limits_{x \to \infty}f(x) = c$ Let $\epsilon \gt 0$ be given. There is a positive number $N$ such that $\vert f(x) - c\vert \lt \epsilon$ when $x \gt N$ Let $\delta = \frac{1}{N}$ Choose any $t$ such that $0 \lt t \lt \delta$ Then $\frac{1}{t} \gt \frac{1}{\delta} = N$ Then $\vert f(\frac{1}{t})-c \vert \lt \epsilon$ Therefore, $\lim\limits_{t \to 0^+}f(\frac{1}{t}) = c$ Now suppose $\lim\limits_{x \to -\infty}f(x) = c$ Let $\epsilon \gt 0$ be given. There is a negative number $N$ such that $\vert f(x) - c\vert \lt \epsilon$ when $x \lt N$ Let $\delta = \frac{1}{N}$ Choose any $t$ such that $0 \gt t \gt \delta$ Then $\frac{1}{t} \lt \frac{1}{\delta} = N$ Then $\vert f(\frac{1}{t})-c \vert \lt \epsilon$ Therefore, $\lim\limits_{t \to 0^-}f(\frac{1}{t}) = c$ $\lim\limits_{x \to \infty}f(x) = \lim\limits_{t \to 0^+}f(\frac{1}{t})$ and $\lim\limits_{x \to -\infty}f(x) = \lim\limits_{t \to 0^-}f(\frac{1}{t})$ if these limits exist. (b) According to Exercise 65, $\lim\limits_{x \to \infty}\frac{sin~x}{x} = 0$ According to part (a): $\lim\limits_{t \to 0^+}f(\frac{1}{t}) = \lim\limits_{x \to \infty} f(x)$ Therefore: $\lim\limits_{t \to 0^+}t~sin~\frac{1}{t} = \lim\limits_{x \to \infty}\frac{sin~x}{x} = 0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.