Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 2 - Section 2.6 - Limits at Infinity; Horizontal Asymptotes - 2.6 Exercises - Page 140: 80

Answer

Definition: Let $f$ be a function defined on some interval $(-\infty, a)$. Then $\lim\limits_{x \to -\infty} f(x) = -\infty$ means that for every negative number $M$ there is a corresponding negative number $N$ such that if $x \lt N$ then $f(x) \lt M$ $\lim\limits_{x \to -\infty}(1+x^3) = -\infty$

Work Step by Step

Definition: Let $f$ be a function defined on some interval $(-\infty, a)$. Then $\lim\limits_{x \to -\infty} f(x) = -\infty$ means that for every negative number $M$ there is a corresponding negative number $N$ such that if $x \lt N$ then $f(x) \lt M$ Let $f(x) =(1+x^3)$ This function is defined on the interval $(-\infty,\infty)$ Let $M \lt 0$ be given. Let $N = min\{-2, M\}$ Suppose that $x \lt N$ Then: $(1+x^3) \lt x \lt N \leq M$ Therefore, $\lim\limits_{x \to -\infty}(1+x^3) = -\infty$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.