Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 2 - Section 2.6 - Limits at Infinity; Horizontal Asymptotes - 2.6 Exercises - Page 140: 72

Answer

If $x \gt 12,~~~$ then $~~~ \vert \frac{1-3x}{\sqrt{x^2+1}} -(-3)\vert \lt 0.1$ If $x \gt 22,~~~$ then $~~~ \vert \frac{1-3x}{\sqrt{x^2+1}} -(-3)\vert \lt 0.05$

Work Step by Step

We can graph the function $f(x) = \frac{1-3x}{\sqrt{x^2+1}}$ On the graph, we can see that $~~-3 \lt f(x) \lt -2.9~~$ when $~~x \gt 12$ Therefore: If $x \gt 12,~~~$ then $~~~ \vert \frac{1-3x}{\sqrt{x^2+1}} -(-3)\vert \lt 0.1$ On the graph, we can see that $~~-3 \lt f(x) \lt -2.95~~$ when $~~x \gt 22$ Therefore: If $x \gt 22,~~~$ then $~~~ \vert \frac{1-3x}{\sqrt{x^2+1}} -(-3)\vert \lt 0.05$ This illustrates Definition 7 for $\lim\limits_{x \to \infty} \frac{1-3x}{\sqrt{x^2+1}} = -3$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.