Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 2 - Section 2.4 - The Precise Definition of a Limit - 2.4 Exercises - Page 114: 44

Answer

(a) $\lim\limits_{x \to a} [f(x) + g(x)] = \infty$ (b) $\lim\limits_{x \to a} [f(x)g(x)] = \infty~~$ if $c \gt 0$ (c) $\lim\limits_{x \to a} [f(x)g(x)] = -\infty~~$ if $c \lt 0$

Work Step by Step

(a) Let $\epsilon = 1$ There is a number $\delta_1$ such that if $\vert x - a \vert \lt \delta_1$, then $\vert g(x)-c \vert \lt 1$ Then $~~-\vert c \vert -1 \lt g(x) \lt \vert c \vert + 1$ Choose any positive number $M$ There is a number $\delta_2$ such that if $\vert x - a \vert \lt \delta_2$, then $f(x) \gt M+\vert c \vert + 1$ Let $\delta = min\{\delta_1, \delta_2\}$ Then: If $\vert x-a \vert \lt \delta$, then $f(x)+g(x) \gt (M+\vert c\vert + 1) -\vert c \vert - 1 = M$ Therefore, $\lim\limits_{x \to a} [f(x) + g(x)] = \infty$ (b) Suppose that $c \gt 0$ Let $\epsilon = \frac{c}{2}$ There is a number $\delta_1$ such that if $\vert x - a \vert \lt \delta_1$, then $\vert g(x)-c \vert \lt \frac{c}{2}$ Then $~~\frac{c}{2} \lt g(x) \lt \frac{3c}{2}$ Choose any positive number $M$ There is a number $\delta_2$ such that if $\vert x - a \vert \lt \delta_2$, then $f(x) \gt \frac{2M}{c}$ Let $\delta = min\{\delta_1, \delta_2\}$ Then: If $\vert x-a \vert \lt \delta$, then $f(x)g(x) \gt \frac{2M}{c}\cdot \frac{c}{2} = M$ Therefore, $\lim\limits_{x \to a} [f(x)g(x)] = \infty$ (c) Suppose that $c \lt 0$ Let $\epsilon = \vert \frac{c}{2} \vert$ There is a number $\delta_1$ such that if $\vert x - a \vert \lt \delta_1$, then $\vert g(x)-c \vert \lt \frac{c}{2}$ Then $~~\frac{3c}{2} \lt g(x) \lt \frac{c}{2}$ Choose any negative number $N$ There is a number $\delta_2$ such that if $\vert x - a \vert \lt \delta_2$, then $f(x) \gt \frac{2 N }{ c}$ Note that $\frac{2N}{c}$ is a positive number since $N$ and $c$ are both negative numbers. Let $\delta = min\{\delta_1, \delta_2\}$ Then: If $\vert x-a \vert \lt \delta$, then $f(x)g(x) \lt \frac{2N}{c}\cdot \frac{c}{2} = N$ Therefore, $\lim\limits_{x \to a} [f(x)g(x)] = -\infty~~$ if $c \lt 0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.