Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 2 - Section 2.4 - The Precise Definition of a Limit - 2.4 Exercises - Page 114: 22

Answer

$\lim\limits_{x \to -1.5} \frac{9-4x^2}{3+2x} = 6$

Work Step by Step

Let $\epsilon \gt 0$ be given. Let $\delta = \frac{\epsilon}{2}$ Suppose that $\vert x-(-1.5) \vert \lt \delta$. Then: $\vert \frac{9-4x^2}{3+2x}-6 \vert = \vert \frac{(3-2x)(3+2x)}{3+2x}-6 \vert = \vert (3-2x)-6 \vert = \vert -2x-3 \vert = \vert 2x+3 \vert = 2~\vert x+1.5 \vert \lt 2\delta = 2(\frac{\epsilon}{2}) = \epsilon$ Therefore, $\lim\limits_{x \to -1.5} \frac{9-4x^2}{3+2x} = 6$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.