Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 2 - Section 2.4 - The Precise Definition of a Limit - 2.4 Exercises - Page 114: 40

Answer

$\lim\limits_{x \to a}f(x) = L~~$ if and only if $~~\lim\limits_{x \to a^-}f(x) = L = \lim\limits_{x \to a^+}f(x)$

Work Step by Step

Assume that $\lim\limits_{x \to a}f(x) = L$ Then, according to Definition 2, for any $\epsilon \gt 0$, there is a $\delta \gt 0$ such that if $0 \lt \vert x-a \vert \lt \delta~~$ then $~~\vert f(x)-L\vert \lt \epsilon$ Then: If $a-\delta \lt x \lt a~~$ then $~~\vert f(x)-L\vert \lt \epsilon$ If $a \lt x \lt a+\delta~~$ then $~~\vert f(x)-L\vert \lt \epsilon$ Then, according to Definition 3 and Definition 4: $\lim\limits_{x \to a^-}f(x) = L = \lim\limits_{x \to a^+}f(x)$ Now assume that $\lim\limits_{x \to a^-}f(x) = L = \lim\limits_{x \to a^+}f(x)$ Then, according to Definition 3 and Definition 4, for any $\epsilon \gt 0$, there is a $\delta_1 \gt 0$ and $\delta_2 \gt 0$ such that: If $a-\delta_1 \lt x \lt a~~$ then $~~\vert f(x)-L\vert \lt \epsilon$ If $a \lt x \lt a+\delta_2~~$ then $~~\vert f(x)-L\vert \lt \epsilon$ Let $\delta = min\{\delta_1, \delta_2\}$ Then: If $~~0 \lt \vert x-a \vert \lt \delta~~$ then $~~\vert f(x)-L\vert \lt \epsilon$ According to Definition 2: $\lim\limits_{x \to a}f(x) = L$ Therefore: $\lim\limits_{x \to a}f(x) = L~~$ if and only if $~~\lim\limits_{x \to a^-}f(x) = L = \lim\limits_{x \to a^+}f(x)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.