Answer
One common solution $\Rightarrow$ $(3,3)$
Work Step by Step
We use the addition method below:
We add the two equations:
$3x-10y=-21$
$5x+4y=27$
Multiply the first equation by $5$ and the second equation by $-3$ to cancel $x$:
$+15x-50y=-105$
$\underline{-15x-12y=-81}$
$-62y=-186$
Solve for $y$:
$y=\frac{-186}{-62}=\frac{93}{31}=3$
Substitute into any of the two equations and solve for $x$:
$3x-10y=-21$
$3x-10(3)=-21$
$3x-30=-21$
$3x=30-21$
$3x=9$
$x=\frac{9}{3}$
$x=3$