Elementary Technical Mathematics

Published by Brooks Cole
ISBN 10: 1285199197
ISBN 13: 978-1-28519-919-1

Chapter 9 - Section 9.2 - Solving Pairs of Linear Equations by Addition - Exercises - Page 332: 10

Answer

$(\frac{41}{8},-\frac{15}{2})$

Work Step by Step

The given pair of linear equations are. $4x+5y=-17$ ..... (1) $4x+y=13$ ...... (2) Multiply equation (2) by $-1$. $-4x-y=-13$ ..... (3) Add equation (1) and (3). $\Rightarrow 4x+5y-4x-y=-17-13$ Simplify. $\Rightarrow 4y=-30$ Divide both sides by $4$. $\Rightarrow y=-\frac{30}{4}$ Simplify. $\Rightarrow y=-\frac{15}{2}$ Substitute the value of $x$ into equation (2). $\Rightarrow 4x+(-\frac{15}{2})=13$ Simplify. $\Rightarrow 4x-\frac{15}{2}=13$ Isolate $x$. $\Rightarrow x=\frac{1}{4}(13+\frac{15}{2})$ Simplify. $\Rightarrow x=\frac{1}{4}(\frac{26}{2}+\frac{15}{2})$ $\Rightarrow x=\frac{1}{4}(\frac{26+15}{2})$ $\Rightarrow x=\frac{1}{4}(\frac{41}{2})$ $\Rightarrow x=\frac{41}{8}$ Hence, the ordered pair of the point of intersection is $(x,y)=(\frac{41}{8},-\frac{15}{2})$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.