Answer
$A=80.55^{\circ}$.
$b=263.8\;ft$.
$c=1607\;ft$.
Work Step by Step
The given values are
$B=9.45^{\circ}$
$a=1585\;ft$.
In a right angle triangle sum of other two angles is $90^{\circ}$.
$A+B=90^{\circ}$
Isolate $A$.
$A=90^{\circ}-B$
Plug value of $B$.
$A=90^{\circ}-9.45^{\circ}$
Simplify.
$A=80.55^{\circ}$.
By using trigonometric ratios.
$\frac{a}{c}=\cos{B}$
Isolate $c$.
$c=\frac{a}{\cos{B}}$
Plug all values.
$c=\frac{1585\;ft}{\cos{(9.45^{\circ})}}$
By using degree calculator simplify.
$c=1607\;ft$ (rounded value).
By using trigonometric ratios.
$\frac{b}{a}=\tan{B}$
Isolate $b$.
$b=a\cdot \tan{B}$
Plug all values.
$b=(1585\;ft)\cdot \tan{(9.45^{\circ})}$
By using degree calculator simplify.
$b=263.8\;ft$ (rounded value).