Answer
$A=35.5^{\circ}$.
$B=54.5^{\circ}$.
$b=3415.25\;ft$.
Work Step by Step
The given values are
$a=2436\;ft$
$c=4195\;ft$.
By using trigonometric ratios.
$\frac{a}{c}=\sin{A}$
Isolate $A$.
$A=\sin^{-1}\left(\frac{a}{c} \right )$
Plug all values.
$A=\sin^{-1}\left(\frac{2436\;ft}{4195\;ft} \right )$
By using degree calculator simplify.
$A=35.5^{\circ}$ (rounded value).
In a right angle triangle sum of other two angles is $90^{\circ}$.
$A+B=90^{\circ}$
Isolate $B$.
$B=90^{\circ}-A$
Plug value of $A$.
$B=90^{\circ}-35.5^{\circ}$
Simplify.
$B=54.5^{\circ}$.
By using Pythagorean theorem.
$b=\sqrt{c^2-a^2}$
Plug all values.
$b=\sqrt{(4195\;ft)^2-(2436\;ft)^2}$
Simplify.
$b=\sqrt{17598025\;ft^2-5934096\;ft^2}$
$b=\sqrt{(11663929\;ft^2)}$
$b=3415.25\;ft$.