Answer
$A=45^{\circ}$.
$B=45^{\circ}$.
$c=19.23\;cm$.
Work Step by Step
The given values are
$a=13.6\;cm$
$b=13.6\;cm$.
By using trigonometric ratios.
$\frac{a}{b}=\tan{A}$
Isolate $A$.
$A=\tan^{-1}\left(\frac{a}{b} \right )$
Plug all values.
$A=\tan^{-1}\left(\frac{13.6\;cm}{13.6\;cm} \right )$
By using degree calculator simplify.
$A=45^{\circ}$ (rounded value).
In a right angle triangle sum of other two angles is $90^{\circ}$.
$A+B=90^{\circ}$
Isolate $B$.
$B=90^{\circ}-A$
Plug value of $A$.
$B=90^{\circ}-45^{\circ}$
Simplify.
$B=45^{\circ}$.
By using Pythagorean theorem.
$c=\sqrt{a^2+b^2}$
Plug all values.
$c=\sqrt{(13.6\;cm)^2+(13.6\;cm)^2}$
Simplify.
$c=\sqrt{(184.96\;cm^2+184.96\;cm^2}$
$c=\sqrt{(3699.92\;cm^2)}$
$c=19.23\;cm$.