Answer
TRUE
$(x - 5)^2 = 12$
Using the Square Root Property $u^2 = d$, then $u = \sqrt d$ or $u = - \sqrt d$.
Thus,
$x - 5 = ±\sqrt12$
$x -5 = ±\sqrt12$
$x -5= ±\sqrt(4⋅3)$
$x -5 = ±2\sqrt3$
Work Step by Step
$(x - 5)^2 = 12$
Using the Square Root Property $u^2 = d$, then $u = \sqrt d$ or $u = - \sqrt d$.
Thus,
$x - 5 = ±\sqrt12$
$x -5 = ±\sqrt12$
$x -5= ±\sqrt(4⋅3)$
$x -5 = ±2\sqrt3$