Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 7 - Section 7.6 - Radical Equations - Exercise Set - Page 560: 49

Answer

$9$.

Work Step by Step

The given function is $\Rightarrow f(x)= \sqrt {x+16}-\sqrt x-2$ Plug $f(x)=0$ into the equation. $\Rightarrow 0= \sqrt {x+16}-\sqrt x-2$ Add $\sqrt x+2$ to both sides. $\Rightarrow 0+\sqrt x+2= \sqrt {x+16}-\sqrt x-2+\sqrt x+2$ Simplify. $\Rightarrow \sqrt x+2= \sqrt {x+16}$ Square both sides. $\Rightarrow (\sqrt x+2)^2= (\sqrt {x+16})^2$ Use the special formula $(A-B)^2=A^2-2AB+B^2$ We have $A=\sqrt x$ and $B=2$ $\Rightarrow (\sqrt x)^2+2(\sqrt x)(2)+(2)^2=x+16$ Simplify. $\Rightarrow x+4\sqrt x+4=x+16$ Add $-x-4$ to both sides. $\Rightarrow x+4\sqrt x+4-x-4=x+16-x-4$ Simplify. $\Rightarrow 4\sqrt x=12$ Divide both sides by $4$. $\Rightarrow \frac{4\sqrt x}{4}=\frac{12}{4}$ Simplify. $\Rightarrow \sqrt x=3$ Square both sides. $\Rightarrow (\sqrt x)^2=(3)^2$ Simplify. $\Rightarrow x=9$ The $x-$ intercept is $9$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.