Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 7 - Section 7.6 - Radical Equations - Exercise Set - Page 560: 23

Answer

$\{2\}$.

Work Step by Step

The given expression is $\Rightarrow \sqrt{x+2}+\sqrt{x-1}=3$ Subtract $\sqrt{x-1}$ from both sides. $\Rightarrow \sqrt{x+2}+\sqrt{x-1}-\sqrt{x-1}=3-\sqrt{x-1}$ Simplify. $\Rightarrow \sqrt{x+2}=3-\sqrt{x-1}$ Square both sides. $\Rightarrow (\sqrt{x+2})^2=(3-\sqrt{x-1})^2$ Use the special formula $(A-B)^2=A^2-2AB+B^2$ We have $A=3$ and $B=\sqrt{x-1}$ $\Rightarrow x+2=(3)^2-2(3)(\sqrt{x-1})+(\sqrt{x-1})^2$ Simplify. $\Rightarrow x+2=9-6\sqrt{x-1}+x-1$ $\Rightarrow x+2=8-6\sqrt{x-1}+x$ Add $6\sqrt{x-1}-x-2$ to both sides. $\Rightarrow x+2+6\sqrt{x-1}-x-2=8-6\sqrt{x-1}+x+6\sqrt{x-1}-x-2$ Add like terms. $\Rightarrow 6\sqrt{x-1}=6$ Divide both sides by $6$. $\Rightarrow \frac{6\sqrt {x-1}}{6}=\frac{6}{6}$ Simplify. $\Rightarrow \sqrt {x-1}=1$ Square both sides. $\Rightarrow (\sqrt {x-1})^2=(1)^2$ Simplify. $\Rightarrow x-1=1$ Add $1$ to both sides. $\Rightarrow x-1+1=1+1$ Simplify. $\Rightarrow x=2$ The solution set is $\{2\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.