Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 7 - Section 7.6 - Radical Equations - Exercise Set - Page 560: 33

Answer

$\{2,6\}$.

Work Step by Step

The given expression is $\Rightarrow \sqrt{2x-3}-\sqrt{x-2}=1$ Add $\sqrt{x-2}$ to both sides. $\Rightarrow \sqrt{2x-3}-\sqrt{x-2}+\sqrt{x-2}=1+\sqrt{x-2}$ Simplify. $\Rightarrow \sqrt{2x-3}=1+\sqrt{x-2}$ Square both sides. $\Rightarrow (\sqrt{2x-3})^2=(1+\sqrt{x-2})^2$ Use the special formula $(A-B)^2=A^2-2AB+B^2$ We have $A=1$ and $B=\sqrt{x-2}$ $\Rightarrow 2x-3=(1)^2+2(1)(\sqrt{x-2})+(\sqrt{x-2})^2$ Simplify. $\Rightarrow 2x-3=1+2\sqrt{x-2}+x-2$ $\Rightarrow 2x-3=2\sqrt{x-2}+x-1$ Add $-x+1$ to both sides. $\Rightarrow 2x-3-x+1=2\sqrt{x-2}+x-1-x+1$ Add like terms. $\Rightarrow x-2=2\sqrt{x-2}$ Square both sides. $\Rightarrow (x-2)^2=(2\sqrt{x-2})^2$ Use the special formula $(A-B)^2=A^2-2AB+B^2$ We have $A=x$ and $B=2$ $\Rightarrow (x)^2-2(x)(2)+(2)^2=4(x-2)$ Simplify. $\Rightarrow x^2-4x+4=4x-8$ Add $-4x+8$ to both sides. $\Rightarrow x^2-4x+4-4x+8=4x-8-4x+8$ Simplify. $\Rightarrow x^2-8x+12=0$ Rewrite the middle term $-8x$ as $-6x-2x$. $\Rightarrow 0=x^2-6x-2x+12$ Group the terms. $\Rightarrow 0=(x^2-6x)+(-2x+12)$ Factor each group. $\Rightarrow 0=x(x-6)-2(x-6)$ Factor out $(x-6)$. $\Rightarrow 0=(x-6)(x-2)$ $\Rightarrow x-6=0$ or $x-2=0$ Isolate $x$. $\Rightarrow x=6$ or $x=2$ The solution set is $\{2,6\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.