Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 7 - Section 7.6 - Radical Equations - Exercise Set - Page 560: 36

Answer

$\{2,4\}$.

Work Step by Step

The given expression is $\Rightarrow 2(x-1)^{\frac{1}{3}}=(x^2+2x)^{\frac{1}{3}}$ Cube both sides. $\Rightarrow \left [2(x-1)^{\frac{1}{3}}\right ]^3=\left [ (x^2+2x)^{\frac{1}{3}}\right ]^3$ Multiply exponents on both sides and simplify. $\Rightarrow 8(x-1)=x^2+2x$ Use the distributive property. $\Rightarrow 8x-8=x^2+2x$ Add $-8x+8$ to both sides. $\Rightarrow 8x-8-8x+8=x^2+2x-8x+8$ Simplify. $\Rightarrow 0=x^2-6x+8$ Rewrite the middle term $-6x$ as $-4x-2x$. $\Rightarrow 0=x^2-4x-2x+8$ Group the terms. $\Rightarrow 0=(x^2-4x)+(-2x+8)$ Factor each group. $\Rightarrow 0=x(x-4)-2(x-4)$ Factor out $(x-4)$. $\Rightarrow 0=(x-4)(x-2)$ Set each factor equal to zero. $\Rightarrow x-4=0$ or $x-2=0$ Isolate $x$. $\Rightarrow x=4$ or $x=2$ The solution set is $\{2,4\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.