Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 7 - Cumulative Review Exercises - Page 579: 5

Answer

$\{-1\}$.

Work Step by Step

The given equation is $\Rightarrow \sqrt{x+2}-\sqrt{x+1}=1$ Add $\sqrt{x+1}$ to both sides. $\Rightarrow \sqrt{x+2}-\sqrt{x+1}+\sqrt{x+1}=1+\sqrt{x+1}$ Simplify. $\Rightarrow \sqrt{x+2}=1+\sqrt{x+1}$ Square both sides. $\Rightarrow (\sqrt{x+2})^2=(1+\sqrt{x+1})^2$ Use the special formula $(A+B)^2=A^2+2AB+B^2$ on the right side. We have $A=1$ and $B=\sqrt{x+1}$ $\Rightarrow (\sqrt{x+2})^2=1^2+2(1)(\sqrt{x+1})+(\sqrt{x+1})^2$ Simplify. $\Rightarrow x+2=1+2\sqrt{x+1}+x+1$ $\Rightarrow x+2=2\sqrt{x+1}+x+2$ Subtract $x+2$ from both sides. $\Rightarrow x+2-x-2=2\sqrt{x+1}+x+2-x-2$ Simplify. $\Rightarrow 0=2\sqrt{x+1}$ Divide both sides by $2$. $\Rightarrow \frac{0}{2}=\frac{2\sqrt{x+1}}{2}$ Simplify. $\Rightarrow 0=\sqrt{x+1}$ Square both sides. $\Rightarrow (0)^2=(\sqrt{x+1})^2$ Simplify. $\Rightarrow 0=x+1$ Subtract $1$ from both sides. $\Rightarrow 0-1=x+1-1$ Simplify. $\Rightarrow -1=x$ The solution set is $\{-1\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.