Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 5 - Section 5.4 - Factoring Trinomials - Exercise Set - Page 363: 139

Answer

$\{(2,-1,3)\}$.

Work Step by Step

The given system of equations is $\left\{\begin{matrix} 2x& -y &-2z&=&-1& ...... (1) \\ x& -2y & -z&=&1& ...... (2)\\ x& +y &+z &=&4& ...... (3) \end{matrix}\right.$ Addition method:- Step 1:- Reduce the system to two equations in two variables. Multiply the equation (3) by $2$. $\Rightarrow 2x+2y +2z=8 $ ...... (4) Add equation (1) and (4). $\Rightarrow 2x-y-2z+2x+2y +2z=-1+8 $ Simplify. $\Rightarrow 4x+y =7 $...... (5) Add equation (2) and (3). $\Rightarrow x-2y-z+x+y +z=1+4 $ $\Rightarrow 2x-y=5 $ ...... (6) Step 2:- Solve the two equations from the step 1. Add equation (5) and (6). $\Rightarrow 4x+y+2x-y=7+5$ Simplify. $\Rightarrow 6x=12$ Divide both sides by $6$. $\Rightarrow \frac{6x}{6}=\frac{12}{6}$ Simplify. $\Rightarrow x=2$ Step 3:- Use back-substitution in one of the equations from step 2. Substitute the value of $x$ into equation (5). $\Rightarrow 4(2)+y =7 $ Simplify. $\Rightarrow 8+y=7$ Subtract $8$ from both sides. $\Rightarrow 8+y -8=7-8$ Add like terms. $\Rightarrow y =-1$ Step 4:- Back substitute both variables into the original equation to find the third variable. Substitute the value of $x$ and $y$ into equation (3). $\Rightarrow 2 +(-1) +z=4 $ Simplify. $\Rightarrow 2 -1 +z=4 $ $\Rightarrow 1 +z=4 $ Subtract $1$ from both sides. $\Rightarrow 1 +z-1=4 -1$ Simplify. $\Rightarrow z=3$ The solution set is $\{(x,y,z)\}=\{(2,-1,3)\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.