Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 3 - Review Exercises - Page 250: 44

Answer

$\{(-3,2,1)\}$.

Work Step by Step

The given system of equations is $\left\{\begin{matrix} 2x& +y &&=&-4\\ & y & -2z&=&0\\ 3x& &-2z &=&-11 \end{matrix}\right.$ The formula to determine the determinant is $D=\begin{vmatrix} a& b &c \\ d& e &f \\ g &h &i \end{vmatrix}=a\begin{vmatrix} e& f \\ h&i \end{vmatrix}-b\begin{vmatrix} d& f \\ g&i \end{vmatrix}+c\begin{vmatrix} d& e \\ g&h \end{vmatrix}$ Determinant $D$ consists of the $x,y$ and $z$ coefficients. $D=\begin{vmatrix} 2& 1 &0 \\ 0& 1 &-2 \\ 3 &0 &-2 \end{vmatrix}=-10$ For determinant $D_x$ replace the $x−$ coefficients with the constants. $D_x=\begin{vmatrix} -4& 1 &0 \\ 0& 1 &-2 \\ -11&0 &-2 \end{vmatrix}=30$ For determinant $D_y$ replace the $y−$ coefficients with the constants. $D_y=\begin{vmatrix} 2& -4 &0 \\ 0& 0 &-2 \\ 3 &-11 &-2 \end{vmatrix}=-20$ For determinant $D_z$ replace the $z−$ coefficients with the constants. $D_z=\begin{vmatrix} 2& 1 &-4 \\ 0& 1 &0 \\ 3 &0 &-11 \end{vmatrix}=-10$ By using Cramer's rule we have. $x=\frac{D_x}{D}=\frac{30}{-10}=-3$ and $y=\frac{D_y}{D}=\frac{-20}{-10}=2$ and $z=\frac{D_z}{D}=\frac{-10}{-10}=1$ Hence, the solution set is $\{(x,y,z)\} =\{(-3,2,1)\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.