Answer
$-86$
Work Step by Step
We know that for a matrix
\[
\left[\begin{array}{rrr}
a & b & c \\
d &e & f \\
g &h & i \\
\end{array} \right]
\]
the determinant, $D=a(ei-fh)-b(di-fg)+c(dh-eg).$
Hence here $D=2((-1)\cdot0-5\cdot4)-4(1\cdot0-5\cdot(-2))+(-3)(1\cdot4-(-1)\cdot(-2))=2(-20)-4(10)+(-3)2=-86.$