Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 3 - Review Exercises - Page 250: 43

Answer

$\{(23,-12,3)\}$.

Work Step by Step

The given system of equations is $\left\{\begin{matrix} x& +2y &+2z&=&5\\ 2x& +4y & +7z&=&19\\ -2x& -5y &-2z &=&8 \end{matrix}\right.$ The formula to determine the determinant is $D=\begin{vmatrix} a& b &c \\ d& e &f \\ g &h &i \end{vmatrix}=a\begin{vmatrix} e& f \\ h&i \end{vmatrix}-b\begin{vmatrix} d& f \\ g&i \end{vmatrix}+c\begin{vmatrix} d& e \\ g&h \end{vmatrix}$ Determinant $D$ consists of the $x,y$ and $z$ coefficients. $D=\begin{vmatrix} 1& 2 &2 \\ 2& 4 &7 \\ -2 &-5 &-2 \end{vmatrix}=3$ For determinant $D_x$ replace the $x−$ coefficients with the constants. $D_x=\begin{vmatrix} 5& 2 &2 \\ 19& 4 &7 \\ 8 &-5 &-2 \end{vmatrix}=69$ For determinant $D_y$ replace the $y−$ coefficients with the constants. $D_y=\begin{vmatrix} 1& 5 &2 \\ 2& 19 &7 \\ -2 &8 &-2 \end{vmatrix}=-36$ For determinant $D_z$ replace the $z−$ coefficients with the constants. $D_z=\begin{vmatrix} 1& 2 &5 \\ 2& 4 &19 \\ -2 &-5 &8 \end{vmatrix}=9$ By using Cramer's rule we have. $x=\frac{D_x}{D}=\frac{69}{3}=23$ and $y=\frac{D_y}{D}=\frac{-36}{3}=-12$ and $z=\frac{D_z}{D}=\frac{9}{3}=3$ Hence, the solution set is $\{(x,y,z)\} =\{(23,-12,3)\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.