Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 3 - Review Exercises - Page 250: 41

Answer

$\{(\frac{7}{4},−\frac{25}{8})\}$.

Work Step by Step

The given system of equations is $\left\{\begin{matrix} x& -2y &=&8 \\ 3x& +2y &=&-1 \end{matrix}\right.$ Determinant $D$ consists of the $x−$ and $y−$ coefficients. $D=\begin{vmatrix} 1& -2 \\ 3&2 \end{vmatrix}=(1)(2)-(3)(-2)=2+6=8$ For determinant $D_x$ replace the $x−$ coefficients with the constants. $D_x=\begin{vmatrix} 8& -2 \\ -1&2 \end{vmatrix}=(8)(2)-(-1)(-2)=16-2=14$ For determinant $D_y$ replace the $y−$ coefficients with the constants. $D_y=\begin{vmatrix} 1& 8 \\ 3&-1 \end{vmatrix}=(1)(-1)-(3)(8)=-1-24=-25$ By using Cramer's rule we have. $x=\frac{D_x}{D}=\frac{14}{8}=\frac{7}{4}$ And $y=\frac{D_y}{D}=\frac{-25}{8}$ Hence, the solution set is $\{(x,y)\}=\{(\frac{7}{4},−\frac{25}{8})\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.