Answer
$ln 50$
Work Step by Step
$log 50$ has a base of 10, while $ln 50$ has a base of $e$. The smaller a base of a log, the greater the result.
Example:
$log 400$
$log 4*100$
$log 4 + log 100$
$log 4 + log 10^2$
$log 4 +2$
$2+ log 4$
$log 4 = .602$
$2+ log 4$
$2+ .602$
$2.602$
$log_2 400$
$log_2 4*100$
$log_2 4*4*25$
$log_2 4 + log_2 4 + log_2 25$
$2+2+ log_2 25$
$4+log_2 25$
$log_2 25 = 4.643856$
$4+log_2 25$
$4+4.643856$
$8.643$
In this example, the log with the smaller base ($log_2 400$) is greater than the log with the larger base ($log 400$).