Intermediate Algebra (6th Edition)

Published by Pearson
ISBN 10: 0321785045
ISBN 13: 978-0-32178-504-6

Chapter 9 - Cumulative Review - Page 601: 31

Answer

$x=\dfrac{-1\pm\sqrt{33}}{4}$

Work Step by Step

Multiplying both sides by the $LCD=x(x-2)$, the expression $ \dfrac{3x}{x-2}-\dfrac{x+1}{x}=\dfrac{6}{x(x-2)} $ simplifies to \begin{array}{l} x(x-2)\left( \dfrac{3x}{x-2}-\dfrac{x+1}{x}\right)=\left(\dfrac{6}{x(x-2)}\right)x(x-2) \\\\ x(3x)-(x-2)(x+1)=1(6) \\\\ 3x^2-(x^2+x-2x-2)=6 \\\\ 3x^2-x^2-x+2x+2=6 \\\\ 2x^2+x-4=0 .\end{array} Using the Quadratic Formula, $x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}$, the values of $x$ are \begin{array}{l} x=\dfrac{-1\pm\sqrt{(1)^2-4(2)(-4)}}{2(2)} \\\\ x=\dfrac{-1\pm\sqrt{33}}{4} .\end{array}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.