Answer
$9ab^{2}\sqrt[3] {a^{2}}$
Work Step by Step
$\frac{3\sqrt[3] {81a^{5}b^{10}}}{\sqrt[3] {3b^{4}}}$
=$\frac{3\sqrt[3] {27\times3\times a^{3} \times a^{2} \times b^{9}\times b}}{\sqrt[3] {3b\times b^{3}}}$
=$\frac{3\sqrt[3] {27\times a^{3} \times b^{9}\times 3 \times a^{2} \times b}}{b\sqrt[3] {3b}}$
=$\frac{3\sqrt[3] {27\times a^{3} \times b^{9}}\times \sqrt[3] {3 \times a^{2} \times b}}{b\sqrt[3] {3b}}$
=$\frac{3\times 3ab^{3}\times \sqrt[3] {3 \times a^{2} \times b}}{b\sqrt[3] {3b}}$
=$\frac{3\times 3ab^{2}\times \sqrt[3] {3 \times a^{2} \times b}}{\sqrt[3] {3b}}$
=$\frac{9ab^{2}\times \sqrt[3] {3b}\times \sqrt[3] {a^{2}}}{\sqrt[3] {3b}}$
=$9ab^{2}\sqrt[3] {a^{2}}$