Intermediate Algebra (6th Edition)

Published by Pearson
ISBN 10: 0321785045
ISBN 13: 978-0-32178-504-6

Chapter 9 - Cumulative Review - Page 601: 29

Answer

$x=\dfrac{3}{2}\pm \dfrac{i\sqrt{15}}{6}$

Work Step by Step

Using the completing the square method, the solution set to the equation $ 3x^2-9x+8=0 $ is \begin{array}{l} x^2-3x+\dfrac{8}{3}=0 \text{... divide both sides by 3} \\\\ x^2-3x=-\dfrac{8}{3} \\\\ x^2-3x+\left( \dfrac{-3}{2} \right)^2=-\dfrac{8}{3}+\left( \dfrac{-3}{2} \right)^2 \\\\ x^2-3x+\dfrac{9}{4}=-\dfrac{8}{3}+\dfrac{9}{4} \\\\ x^2-3x+\dfrac{9}{4}=\dfrac{-32+27}{12} \\\\ \left( x-\dfrac{3}{2} \right)^2=\dfrac{-5}{12} \\\\ x-\dfrac{3}{2}=\pm\sqrt{\dfrac{-5}{12}} \\\\ x-\dfrac{3}{2}=\pm i\sqrt{\dfrac{5}{4\cdot3}} \\\\ x-\dfrac{3}{2}=\pm \dfrac{i}{2}\sqrt{\dfrac{5}{3}} \\\\ x-\dfrac{3}{2}=\pm \dfrac{i}{2}\sqrt{\dfrac{5}{3}\cdot\dfrac{3}{3}} \\\\ x-\dfrac{3}{2}=\pm \dfrac{i}{2}\sqrt{\dfrac{15}{9}} \\\\ x-\dfrac{3}{2}=\pm \dfrac{i\sqrt{15}}{6} \\\\ x=\dfrac{3}{2}\pm \dfrac{i\sqrt{15}}{6} .\end{array}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.