Answer
$P=\dfrac{4x}{x+5}
\text{ ft}
$;
$A=\dfrac{x^2}{x^2+10x+25}
\text{ sq. ft}
$
Work Step by Step
Using $P=4s$ (or the Perimeter of a Square), then the perimeter is
\begin{array}{l}\require{cancel}
P=4\left( \dfrac{x}{x+5} \right)
\\\\
P=\dfrac{4x}{x+5}
\text{ ft}
.\end{array}
Using $A=s^2$ (or the Area of a Square), then the area is
\begin{array}{l}\require{cancel}
A=\left( \dfrac{x}{x+5} \right)^2
\\\\
A=\dfrac{x^2}{(x+5)^2}
\\\\
A=\dfrac{x^2}{(x)^2+2(x)(5)+(5)^2}
\\\\
A=\dfrac{x^2}{x^2+10x+25}
\text{ sq. ft}
.\end{array}