Intermediate Algebra (6th Edition)

Published by Pearson
ISBN 10: 0321785045
ISBN 13: 978-0-32178-504-6

Chapter 6 - Section 6.2 - Adding and Subtracting Rational Expressions - Exercise Set - Page 355: 79

Answer

$-\dfrac{4}{x-1}$

Work Step by Step

The given expression, $ \left( \dfrac{x}{x+1}-\dfrac{x}{x-1} \right)\div\dfrac{x}{2x+2} ,$ simplifies to \begin{array}{l}\require{cancel} \dfrac{(x-1)x-(x+1)x}{(x+1)(x-1)}\cdot\dfrac{2x+2}{x} \\\\= \dfrac{x^2-x-(x^2+x)}{(x+1)(x-1)}\cdot\dfrac{2(x+1)}{x} \\\\= \dfrac{x^2-x-x^2-x}{(x+1)(x-1)}\cdot\dfrac{2(x+1)}{x} \\\\= \dfrac{-2x}{(x+1)(x-1)}\cdot\dfrac{2(x+1)}{x} \\\\= \dfrac{-2\cancel{x}}{(\cancel{x+1})(x-1)}\cdot\dfrac{2(\cancel{x+1})}{\cancel{x}} \\\\= \dfrac{-4}{x-1} \\\\= -\dfrac{4}{x-1} .\end{array}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.