Answer
$(r+s+3)(r^2+2rs+s^2-3r-3s+9)$
Work Step by Step
Using $a^3+b^3=(a+b)(a^2-2ab+b^2)$ or the factoring of the sum of 2 cubes, then,
\begin{array}{l}
(r+s)^3+27
\\=
[(r+s)+(3)][(r+s)^2-(r+s)(3)+(3)^2]
\\=
[(r+s)+(3)][(r^2+2rs+s^2)-3r-3s+9]
\\=
(r+s+3)(r^2+2rs+s^2-3r-3s+9)
.\end{array}