Answer
$-6x^{2}-27x^{2}y^{2}+15$
Work Step by Step
We are given the expression $(13x^{2}-26x^{2}y^{2}+4)-(19x^{2}+x^{2}y^{2}-11)$. We can subtract the second polynomial from the first polynomial by adding the opposite of the second polynomial to the first polynomial.
$(13x^{2}-26x^{2}y^{2}+4)+(-19x^{2}-x^{2}y^{2}+11)$
We can combine like terms to simplify.
$(13x^{2}-19x^{2})+(-26x^{2}y^{2}-x^{2}y^{2})+(4+11)=-6x^{2}-27x^{2}y^{2}+15$