Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 14 - Sequences, Series, and the Binomial Theorem - 14.1 Sequences and Series - 14.1 Exercise Set - Page 894: 44

Answer

$a_n=n(n+1)$

Work Step by Step

We have to write an expression for the general term of sequence: $2,6,12,20,30, . . .$ Let's find the pattern for the general term: $a_2-a_1=6-2=4=2+2\cdot1,$ $a_2=a1+2 +2\cdot1$ $a_3-a_2=12-6=6=2+2\cdot2,$ $a_3=a_2+2+2\cdot2$ $a_4-a_3=20-12=8=2+2\cdot3,$ $a_4=a_3+2+2\cdot3$ $a_5-a_4=30-20=10=2+2\cdot4,$ $a_5=a_4+2+2\cdot4$ $a_1=2$ $a_2=a_1+2+2\cdot1$ $a_3=a_1+2+2\cdot1+2+2\cdot2=a_1+2\cdot2+2(1+2)$ $a_4=a_1+2+2\cdot1+2+2\cdot2+2+2\cdot3$ $a_4=a_1+2\cdot3+2(1+2+3)$ $a_5=a_1+2+2\cdot1+2+2\cdot2+2+2\cdot3+2+2\cdot4$ $a_5=a_1+2\cdot4+2(1+2+3+4)$ $a_n=a_1+2(n-1)+2(1+2+3+ . . . +(n-1))$ The value in brackets is an arithmetic progression. $a_n=a_1+2(n-1)+2\dfrac{1+(n-1)}{2}(n-1)$ $$a_n=2+2(n-1)+n(n-1)=n^2+n=n(n+1)$$ Another solution: We can write: $a_1=2=1\cdot 2=1\cdot (1+1)$ $a_2=6=2\cdot 3=2\cdot (2+1)$ $a_3=12=3\cdot 4=3\cdot (3+1)$ $a_4=20=4\cdot 5=4\cdot (4+1)$ So the general term is: $a_n=n(n+1)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.