Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 14 - Sequences, Series, and the Binomial Theorem - 14.1 Sequences and Series - 14.1 Exercise Set - Page 894: 30

Answer

$a_{1}=(-2)^{1+1}=(-2)^2=4$ $a_{2}=(-2)^{2+1}=(-2)^3=-8$ $a_{3}=(-2)^{3+1}=(-2)^4=16$ $a_{4}=(-2)^{4+1}=(-2)^5=-32$ $a_{10}=(-2)^{10+1}=(-2)^{11}=-2048$ $a_{15}=(-2)^{15+1}=(-2)^{16}=65536$

Work Step by Step

If we want to find a term, we have to substitute $n$ by its index: $a_{1}=(-2)^{1+1}=(-2)^2=4$ $a_{2}=(-2)^{2+1}=(-2)^3=-8$ $a_{3}=(-2)^{3+1}=(-2)^4=16$ $a_{4}=(-2)^{4+1}=(-2)^5=-32$ $a_{10}=(-2)^{10+1}=(-2)^{11}=-2048$ $a_{15}=(-2)^{15+1}=(-2)^{16}=65536$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.