Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 12 - Exponential Functions and Logarithmic Functions - 12.2 Exponential Functions - 12.2 Exercise Set - Page 796: 56

Answer

The factor of the polynomial $5{{x}^{4}}-10{{x}^{3}}-3{{x}^{2}}+6x$ is$x\left( x-2 \right)\left( 5{{x}^{2}}-3 \right)$.

Work Step by Step

$5{{x}^{4}}-10{{x}^{3}}-3{{x}^{2}}+6x$ The factor of the polynomial $5{{x}^{4}}-10{{x}^{3}}-3{{x}^{2}}+6x$ is calculated as follows. $5{{x}^{4}}-10{{x}^{3}}-3{{x}^{2}}+6x=\left( 5{{x}^{3}}\cdot x-10{{x}^{2}}\cdot x-3x\cdot x+6\cdot x \right)$ Use the distributive property; $5{{x}^{4}}-10{{x}^{3}}-3{{x}^{2}}+6x=x\left( 5{{x}^{3}}-10{{x}^{2}}-3x+6 \right)$ Group the terms as follows: $\begin{align} & 5{{x}^{4}}-10{{x}^{3}}-3{{x}^{2}}+6x=x\left( 5{{x}^{3}}-10{{x}^{2}}-3x+6 \right) \\ & =x\left[ 5{{x}^{2}}\left( x-2 \right)-3\left( x-2 \right) \right] \end{align}$ Factor out the common binomial factor$\left( x-2 \right)$. $\begin{align} & 5{{x}^{4}}-10{{x}^{3}}-3{{x}^{2}}+6x=x\left[ 5{{x}^{2}}\left( x-2 \right)-3\left( x-2 \right) \right] \\ & =x\left( x-2 \right)\left( 5{{x}^{2}}-3 \right) \end{align}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.